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Abstract 

Urban-scale quantification of window views can inform housing selection and valuation, 
landscape management, and urban planning. However, window views are numerous in high-
rise, high-density urban areas and current automatic assessments of window views are 
inaccurate and time-consuming. Thus, both accurate and efficient assessment of window views 
is significant in improving the automation for urban-scale window view applications. The paper 
presents an automatic, accurate, and efficient assessment of window view indices (WVIs) of 
greenery, sky, waterbody, and construction using 3D color City Information Models (CIMs). 
The workflow includes: i) 3D semantic segmentation of photorealistic CIM and Digital Surface 
Model (DSM), and ii) batch computation of WVIs. Experimental results showed the estimated 
WVIs were more accurate (RMSE < 0.01), and the proposed method was more efficient (3.68 
times faster) than Li et al.’s (2022) 2D semantic segmentation. Thus, the proposed method can 
facilitate large-scale WVI assessment and update in healthy high-rise, high-density urban 
development. 
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1 Introduction 

A high-quality window view with more greenery, sky, waterbody, and fewer construction 
elements is treasured by urban dwellers, especially in high-rise, high-density urban areas. The 
recognized benefits of a high-quality window view include stress relief, life satisfaction, and 
productivity improvement [1, 2, 3]. In the post-Covid-19 era, the benefits of window views are 
further amplified for urban dwellers because of increasingly long-term indoor occupation and 
reduced social activities [4]. 
 

Assessment of window views can help provide quantified evidence for informed housing 
selection and valuation, landscape management and urban planning, and new building design. 
For example, renters and purchasers can holistically sort and select rooms by window view 
indices [5]. Property agencies can precisely value the room using quantified window view 
indicators [6, 7]. Urban planners and architectural designers can leverage the automatic 
assessment tool to compare effects of different plans and designs on window views for living 
environment improvement [8, 9]. 
 

However, window views are numerous especially in high-rise, high-density urban areas and 
often changed in large numbers with the vertical development of neighborhoods. Fine-scale 
quantification of large-scale window views can consume plenty of manpower or computation 
resources [10, 5]. The high time cost often hinders urban planners, designers, and other 
decision-makers to assess and update the window view indices and examine different plans and 
designs for window view optimization [10, 11]. Thus, both efficient and accurate quantification 
of window view features is significant in advancing the window view assessment for urban-
scale applications, such as housing selection and valuation, landscape management, and urban 
planning. 
 

Previously, window views are often collected through onsite photography and manual 
modeling in psychology, built environment, and urban health fields [12, 13]. These methods 
are high-cost, laborious, and thus unscalable to the urban scale. Recently, simulation methods 
i.e., visibility analysis and view photography have been used to assess urban-scale floor-level 
and window views [14, 5]. Generally, traditional visibility analysis on a large-scale landscape 
view assessment still shows a preference for oversimplified models, such as Digital Surface 
Model (DSM) and polygon building models [15]. In comparison, 3D photorealistic City 
Information Models (CIMs) are less used due to more intensive intervisibility computations. 
By contrast, direct view photography on 3D photorealistic CIMs can capture photorealistic 
window views more easily thanks to well-developed OpenGL rendering techniques [16]. 
Specifically, urban-scale photorealistic window views have been generated and assessed using 
3D photorealistic CIM and deep transfer learning [5]. However, the method is inaccurate for 
processing close-range window views and less efficient due to the repetitive segmentation of 
window views without reusing the shared intermediates. Thus, the next generation of 
assessment method needs to improve the processing efficiency for an accurate urban-scale 
window view assessment. 
 

This study presents an automatic, accurate, and efficient assessment method for urban-scale 



window views. Specifically, we extend an assessment of the window view index (WVI) defined 
in Li et al.’s [5] method for color window view images generated from 3D color CIMs. A two-
step workflow using photorealistic CIM and 3D semantic segmentation aims to improve both 
the accuracy and efficiency of the current window view assessment for urban-scale applications. 
The remainder is arranged as follows: research methods, experiment, discussion, and 
conclusion. 

2 Research methods 

Fig. 1 shows the workflow of the proposed method for efficiently assessing the urban-scale 
window views. The input of the method comprises a photorealistic CIM, Building Information 
Models (BIMs), a DSM, and a Normalized difference vegetation index (NDVI) map, as shown 
in Fig. 1a. Fig. 1b and 1c show the method including two steps: i) 3D semantic segmentation 
of photorealistic CIMs and DSM and ii) batch computation of WVIs using generated color 
window views. The outputs are four WVIs as shown in Fig. 1d. 

 

Fig. 1. The workflow of the proposed method. (a) Input, a proposed two-step method comprising (b) 3D semantic segmentation 

of photorealistic CIM and DSM and (c) batch computation of WVIs, and (d) output. 

2.1 Definition of Window View Index (WVI) 
This study applies the WVIs defined in [5] for color window view images generated from a 3D 
color scene as shown in Fig. 2b and 2c. Instead of using a photorealistic scene as shown in Fig. 
2a, Fig. 2c and 2d show the WVI is defined as a ratio on an 8-bit RGB color view image c with 
n pixels, 

WVIl = |{p| p∈c, m(pcolor) = l}| ⁄ n, l ∈L,  
L= {‘greenery’, ‘waterbody’, ‘sky’, ‘construction’}, (1) 

where m is a mapping function to determine the semantic label l of a pixel p based on its color 
pcolor. For example, Fig. 2c shows that the label of p in green is recognized as greenery and the 
label of p in red is recognized as construction elements. The semantic label set L in this study 
includes greenery (green), waterbody (water), sky, and construction (const.). And | · | is a 
function to calculate the total number of pixels with the label l in the image c. Thus, the value 
of WVIl ranges from 0 to 1, as shown in Fig. 2d. And the higher the value, the larger the 
proportion of l in the window view image. 



 

Fig. 2. The WVIl [5] defined on a color window view image. 

2.2 3D segmentation of photorealistic CIM and DSM for a 3D color scene 
To set up a 3D scene colored by L as shown in Fig. 2b, we implement a 3D semantic 
segmentation on photorealistic CIM and DSM, respectively. First, a deep learning model 
KPConv [17] is trained to predict l for every vertex of the photorealistic CIM triangles. 
Specifically, we evenly sample the surface of 3D photorealistic CIM into dense point clouds. 
Thereafter, we train the KPConv model on point clouds annotated by L, finetune the parameters, 
and then apply the well-trained model to predict the rest of the dense point clouds. Last, each 
point is assigned a semantic label l and the triangle vertex of CIM is assigned a label same to 
that of the closest point. 
 

Then, distant landscape elements represented by DSM are segmented into greenery, 
construction, and waterbody using the NDVI map. Since the distant view elements are rendered 
at a lower resolution, we use DSM to represent the distant landscape layer according to the 
observable saturation of measurement accuracy [10]. Specifically, the NDVI map is first 
segmented into categories of greenery, construction, and waterbody using Equation 2. 

lg = �
greenery, NDVIg > 0.1,

construction, 0 ≤ NDVIg ≤ 0.1,
waterbody, NDVIg = no data,

 (2) 

where g is the pixel of the NDVI map, and lg and NDVIg are the semantic label and NDVI value 
of the pixel g, respectively. Threshold values are set for distinguishing pixels of greenery, 
construction, and waterbody following guidance of local geospatial contexts. For example, we 



set 0.1, 0, and no data for experimental tests of Hong Kong in Section 3, following the NDVI-
related report [18] of Planning Department, Hong Kong SAR. Then, each pixel of the DSM is 
assigned a label l by segmented NDVI map through resampling and geo-registration. 
 

Last, we color the 3D CIM, DSM, and the sky layer for a fully 3D color scene using Equation 
3, 

color(vl) = �

RGB (0, 255, 0), l = greenery,
RGB (0, 0, 255), l = waterbody,

RGB (255, 255, 255),
RGB (255, 0, 0),

l = sky,
l = construction,

 (3) 

where color is the function to map the semantic label l of a vertex v of the 3D scene into an 8-
bit RGB color. For example, the vertex v with the semantic label l = greenery is colored in 
green, RGB (0, 255, 0), whereas the vertex with l = waterbody is in blue, RGB (0, 0, 255). 

2.3 Batch computation of WVIs using color view images 
This step batch computes WVIs using color window view images generated from the 3D color 
scene as shown in Fig. 1c. The virtual camera with a field of view at 60 degrees is first placed 
on each window site of the 3D color scene according to the window location information 
provided by the BIMs. Specifically, the virtual camera is set on the window center with tilt = 
0, pitch = 0, and heading = (heading of the window) to capture the outside view. Then, the 
color view images are captured and saved in batch. Last, we set the function m in Equation 1 
as below regarding Equation 3, 

m(pcolor) = �

greenery, pcolor = RGB (0, 255, 0),
waterbody, pcolor = RGB (0, 0, 255),

sky,
construction,

pcolor = RGB (255, 255, 255),
pcolor = RGB (255, 0, 0),

 (4) 

The total number of pixels of each l in every window view image is summarized for computing 
four WVIs using Equations 4 and 1. 

3 Experiment 

3.1 Experimental settings 
We chose 207 buildings in To Kwa Wan, Kowloon Peninsula of Hong Kong to test the 
feasibility of the proposed method, as shown in Fig. 3a and 3b. The study area is located in the 
top density zone according to the Hong Kong Planning Standards and Guidelines [19]. And the 
maximum building height gap is 103.15 m. There are 44,909 windows on the 207 buildings, 
where each building owns 217 windows on average. The 3D photorealistic CIM and DSM were 
collected from the Lands Department as shown in Fig. 3c and 3e [20, 21], while the window 
location information was extracted from BIM data shared by the Urban Renewal Authority as 
shown in Fig. 3d [22]. Fig. 3f shows the 30-m NDVI map collected from [23]. 



 

Fig. 3. Study area of To Kwa Wan, Hong Kong. (a) Location, (b) 207 buildings, (c) 3D photorealistic CIM, (d) BIMs, (e) DSM, 

and (f) NDVI map. 

The computational environment was set up as follows. This study used a workstation with 
an Intel i9-11900K CPU (3.50 GHz, 16 cores), 64G memory, one 24G Nvidia GeForce RTX 
3090 graphic card, and Windows 10 operating system (64-bit). 3D semantic segmentation was 
implemented in a Docker (ver. 20.10.12) container with the environment of Pytorch (ver. 1.10.0) 
and Python (ver. 3.7.11). We used Cesium (ver. 1.99) to set up the 3D color scene and generate 
the color window view images. The WVIs were quantified through a developed Python 
program. To compare the accuracy and efficiency, we implemented Li et al.’s [5] 2D image 
segmentation-based window view assessment method in the same workstation. The same 
version of Cesium was used to generate photorealistic window view images. And we followed 
the settings of [5] to quantify four WVIs using Deeplab V3+ [24] within the same Docker 
container. The one-off annotation of 20 tiles of sampled point cloud for our 3D semantic 
segmentation and 110 window view images for Li et al.’s 2D semantic segmentation consumed 
about 10 person-hours each. In addition, we manually annotated another 100 window view 
images selected in Section 3.2 to test the accuracy of both assessment results. Distant landscape 
elements beyond 2,000 m were colored using DSM and NDVI referring to [10]. Same to Li et 
al.’s window view settings, window view images with 900 × 900 pixels were generated in batch. 

3.2 Experimental results 
Overall, the performance of the trained KPConv in our method reached a mIoU of 0.91 for the 
segmentation of greenery, waterbody, and construction from the 3D photorealistic CIM. The 
values of R2 for estimating four WVIs using Li et al.’s 2D method were above 0.95. Specifically, 



we randomly generated 100 window view images from the 207 buildings for the accuracy and 
efficiency test. Table 1 shows that the assessment results of our method reached a higher 
accuracy (RMSE < 0.01) than those of Li et al.’s 2D method. Observable reason was more 
accurate segmentation of close-range window views using our method as shown in Figure 4. 
Figure 4b shows there existed misclassification of close-range construction elements into other 
landscape elements such as vegetation using Li et al.’s 2D method. By contrast, the results of 
our 3D method were more satisfactory due to the holistic 3D segmentation of the photorealistic 
CIM and DSM. Fig. 4c shows close-range view elements were correctly recognized as 
construction. 

 

Fig. 4. Comparison of the segmentation accuracy against close-range view elements using two methods. (a) Example 

photorealistic window view generated from CIMs, (b) segmented window view using Li et al.’s [5] 2D method, and (c) our 

color window view generated on segmented 3D CIMs. 

Table 1. Comparison of assessment accuracy of two methods on 100 test windows 

 RMSE 

Li et al.’s 2D method Our 3D method Improvement 

WVIgreen 0.0283 0.0059 79.15% 

WVIwater 0.0243 0.0048 80.25% 

WVIsky 0.0098 0.0044 55.10% 

WVIconst. 0.0405 0.0092 77.28% 

Average 0.0257 0.0061 76.26% 

 
Meanwhile, Table 2 shows the processing of 100 window view images using our method saved 
73% of the total time cost compared to Li et al.’s 2D method. The window view generation of 
our method was efficient (3.59 times faster) without the preparation and rendering of the 3D 
CIM texture images. The quantification of WVIs improved 81% of the efficiency by avoiding 
the repetitive 2D segmentation of window view images. In summary, the results in Tables 1 
and 2 confirmed that our method was both accurate and efficient for urban-scale window view 
assessment. 

 



Table 2. Comparison of computational time of the two methods (average of 100 windows) 

Step Processing Li et al.’s 2D 

method 
Our 3D method Improvement 

1 Window view generation 1.94 s 0.54 s 72% 

2 Quantification of WVIs 0.16 s 0.03 s 81% 

 Total 2.10 s 0.57 s 73% 

4 Discussion 

Both accurate and efficient window view assessment method is important for examining and 
updating urban-scale window view indices, which can benefit precise housing valuation and 
selection, landscape management and urban planning, and new building design. For example, 
an efficient assessment method can encourage urban planners and property agencies to quantify 
and timely update the latest window view indices of greenery, waterbody, sky, and construction 
at the urban scale. The updated accurate window view indices of greenery, waterbody, sky, and 
construction can help urban planners to identify the urban areas with less nature exposure for 
prioritized planning and design practices such as planning more blue-green spaces [11]. 
Property agencies can use large-scale accurate window view indicators for precise valuation. 
Instead of the previous qualitative judgment, housing purchasers and renters can select rooms 
with a satisfactory view by comparing and sorting quantified view indicators of rooms 
holistically. In addition, leveraging an accurate and efficient assessment tool, architectural 
designers can compare the effects of different plans and design drafts on window views with a 
low time cost. 
 

Recently, the urban-scale window view assessment has been implemented at the urban scale 
using 3D photorealistic CIM and deep transfer learning. However, the method is still inaccurate 
and inefficient for processing urban-scale window views. The root reasons are inaccurate 2D 
segmentation of close-range window view elements, the high workload of texture rendering, 
and 2D segmentation with repeated computations. For example, the close-range window view 
elements can be segmented into incorrect categories due to the limited resolution of the CIM 
texture images. The generation of window view images is less efficient due to the high 
workload of CIM texture rendering. Landscape elements shared by numerous windows are 
repetitively segmented for every window view without reusing the intermediates. 
 

The contribution of this paper is to present a novel method to improve the accuracy and 
efficiency of window view assessment. A 3D scene colored by four view types (e.g., greenery, 
waterbody, sky, and construction) using 3D CIMs and 3D semantic segmentation is set up to 
avoid the close-range view segmentation and repetitive computation, which effectively 
improves the accuracy and efficiency for an urban-scale window view assessment. 
Experimental results show that the assessment results of our method were more accurate 
(RMSE < 0.01) and the proposed method was 3.68 times faster than Li et al.’s [5] 2D semantic 
segmentation. 
 

There still exist some limitations in the study. First, a full 3D color scene needs to be prepared 



for assessing four WVIs. Small-scale quantification, e.g., for one or two window views may 
not afford the large-scale but one-off preprocessing cost. In other words, the proposed method 
is born for a large-scale window view assessment. In addition, since neighborhood windows 
especially on the upper stories of high-rise buildings often share similar views, the repetitive 
quantification regardless of the spatial context may hinder the efficiency of the urban-scale 
assessment. Thus, future directions include simplification of preprocessing of 3D CIMs and 
mining of window view patterns of different types, locations, and storeys of buildings and 
blocks for a more efficient urban-scale window view assessment. 

5 Conclusion 

Window views are numerous and changed in large numbers with the vertical development of 
the urban landscapes especially in high-rise, high-density urban areas. The current methods are 
inaccurate and inefficient to process window views at the urban scale due to inaccurate 
segmentation and high workloads of repetitive computation. Thus, automatic, accurate, and 
efficient window view assessment is significant for assessing and updating thousands of 
window view indices for urban-scale applications such as housing selection and valuation, 
landscape management, and urban planning. 
 

This study extends the assessment of four defined Window View Indices (WVIs) of greenery, 
waterbody, sky, and construction for 3D color window view images generated from a 3D color 
scene. The 3D scene set up by photorealistic CIM and DSM is first colored by the four types 
of landscape elements using 3D semantic segmentation. Then, 3D color window view images 
are generated from the 3D color scene by placing the virtual camera on the window sites. Last, 
we programmatically summarize the pixels in different colors for computing four WVIs. 
Experimental results in To Kwa Wan, Hong Kong showed that our assessment results were 
more accurate (RMSE < 0.01) and the proposed method was 3.68 times faster than the state-
of-the-art method. The both accurate and efficient assessment of window views can be useful 
for encouraging property agencies, urban planners, and other decision-makers to timely assess 
and update urban-scale window view indices for housing valuation and selection, landscape 
urban management, and urban planning. Future work includes simplifying the preprocessing 
of 3D CIMs and pattern mining of window views for a more efficient urban-scale window view 
assessment. 
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